Picoprobe: Using the Raspberry Pi Pico as Debug Probe

In Getting Started: Raspberry Pi Pico RP2040 with Eclipse and J-Link I used a SEGGER J-Link EDU for debugging: unfortunately, probably because of silicon shortage, these EDU probes are out of stock everywhere. Luckily, there is a solution: just use another Raspberry Pi Pico!

SWD Debugging with PicoProbe

This turns a $5 Raspberry Pi Pico board in to a very usable and versatile debug probe.

Continue reading

Tutorial: Creating Bare-bare Embedded Projects with CMake, with Eclipse included

MCU vendors offer SDKs and configuration tools: that’s a good thing, because that way I can get started quickly and get something up and running ideally in a few minutes. But this gets you into a dependency on tools, SDK and configuration tools too: changing later from one MCU to another can be difficult and time consuming. So why not get started with a ‘bare’ project, using general available tools, just with a basic initialization (clocking, startup code, CMSIS), even with the silicon vendor provided IDE and basic support files?

In this case, I show how you easily can do this with CMake, make and Eclipse, without the (direct) need of an SDK.

NXP LPC55S69-EVK with LoRa Shield
Continue reading

MCUXpresso IDE 11.6.0

With a steady release train, NXP has released last week a new and updated version of their flagship IDE: the version 11.6.0 of the MCUXpresso IDE.

NXP MCUXpresso IDE V11.6.0

And there are several new and cool features with that release, including a power & energy profiler and CMake support.

Continue reading

Getting Started: Raspberry Pi Pico RP2040 with Eclipse and J-Link

In this time where many micro-controllers have 100+ weeks estimated delivery time, it makes sense to look at alternatives. So it is not a surprise that the Raspberry Pi RP2040 gets used more and more in projects. It is not only inexpensive, it is (at least for now) available which makes all the difference. The RP2040 is the first microcontroller from Raspberry Pi: a dual-core ARM Cortex-M0+ running up to 133 MHz, 264 KByte on-Chip RAM and up to 16 MByte external FLASH.

Raspberry Pi Pico with J-Link, with a NXP sensor board

It is a very versatile microcontroller, with a rich eco-system and set of tools. It can be easily used with C/C++ or MicroPython, and the Raspberry Pi Pico board only costs around $5. There are plenty of tutorials out there, for example how to use the Pico board as debug probe to debug another Pico board. While this is great, there is an easy way to use any existing J-Link and Eclipse IDE too, so this is what this article is about.

Continue reading

Creating custom Expansion Board and Header for the MCUXpresso Pins Tool

The MCUXpresso Pins Tool is part of the NXP configuration suite which makes pin assignments, configuration and muxing easy. What I have somehow missed from one of the latest updates and releases is that it allows me now to add my own custom headers definition. Not only the tool is now aware of the ‘standard’ Arduino headers, but I can add my own headers too. This can be useful for providers of breakout boards or any kind of board which can be added to a MCU board. In my case it is very useful for projects where we design our own (breadboard-friendly) board or a custom board with an expansion board: we can design a board header and use it in other projects.

Continue reading

Resurrecting ‘bricked’ NXP Kinetis Devices

Modern MCUs like the NXP Kinetis have security features which prevent reverse engineering, but can ‘brick’ devices too. Depending on the settings, it prevents read-out from the FLASH or reprogramming the device. While some of the protection is (mostly) not by-passable by design, in many case the devices looks like ‘bricked’ but still can be recovered. In this article I’ll get you some ways for a (hopefully) successful recovery.

J-Link EDU Mini recovering a tinyK22 with needle adapter
Continue reading

Debugging the LPC804 on the MCU-Link Pro with an external Debug Probe

The NXP MCU-Link Pro debug probe includes a LPC804 as an additional microcontroller on the board, including its debug header.

MCU-Link Pro Debug Probe Board

The question is: how to debug the on-board extra LPC804 microcontroller with an external debug probe?

Continue reading

GNU Coverage (gcov) with NXP S32 Design Studio IDE

The open-source GNU tools provide a rich set of tools to help developing software. Some are clearly more for the high-end application development. But many of the tools are applicable for the more restricted embedded software development process as well. One is gcov, or the GNU Coverage Tool. Coverage is essential for the testing phase, as it tells you what part of code have been used and ‘covered’. This article describes how GNU coverage can be added the NXP S32 Design Studio IDE.

Continue reading

Recovering bricked LPC55Sxx EVK Boards

While developing applications, it can happen that things go wrong. And in my case I ended up with two LPC55Sxx EVK boards on my desk, which seemed not to be usable any more. The issue: the boards were not accessible with the debug probe, because right after main they muxed the pins in a wrong way :-(.

bricked board with set of debut probes

The standard GDB debug connections (both on-board and off-board) were not able to regain access of the board, because the MCU was running into the fault condition pretty much right out of reset.

Luckily, after a lot of trial-and-error, I have found a way to recover them.

Continue reading