MCUXpresso IDE V11.2.1

I have started the semester and labs using the MCUXpresso IDE V11.2.0 which has been available from July this year. The past week I received the notification that the update V11.2.1 is available: time to check it out….

MCUXpresso IDE V11.2.1

MCUXpresso IDE V11.2.1

Continue reading

Behind the Canvas: Making of “60 Billion Lights”

As promised I’m going to share more details about the “60 Billion Lights” project. It is about a project to build a piece of electronics behind a 100×50 cm canvas to show animations or to display information like temperature, humidity, weather, time or just any arbitrary text.

Make it

Writing text

Continue reading

Tutorial: Adding FreeRTOS to where there is no FreeRTOS

FreeRTOS is pretty much everywhere because it is so simple and universal, and it runs from the smallest to the biggest systems. But it still might be that for the microcontroller device you have selected there is no example or SDK support for it from your vendor of choice. In that case: no problem: I show how you could easily add FreeRTOS plus many more goodies to it.

Binky on NXP LPC845-BRK Board

Binky on NXP LPC845-BRK Board

Continue reading

“60 Billion Lights”: 2400 RGB LEDs and 120 Stepper Motors hiding behind Canvas Art

It is one thing to create something ‘cool’ or technically interesting. But it is a completely different story to convince your girlfriend, partner, wife, family (or whatever you can name it) to hang something on a wall in our house or office. Then it is not about technology: it is more about design and art. So here is my attempt to solve that challenge:

Displaying current temperature

Displaying temperature with a painted canvas, stepper motors and 2400 RGB LEDs

Continue reading

LPC55S16-EVK: how fast does it go? How much current does it take?

I will always take the same approach when I receive a new embedded board: firstly I want to see how quickly I can get it up-and-running, then I want to see what it does “out-of-the-box” and finally I want to find out if the board is “useful”. Does it have some features that will inspire me for new projects??

The NXP LPC55S16-EVK has some great features – CAN-FD, dual USB and a high performance Cortex M33 microcontroller, running at 150 MHz. I have an idea to use the LPC55xx series as the basis for a Weather Station. But this is only feasible if the chip has a low power consumption and can run for weeks on a small battery.

Time to run some test code and get my digital multimeter out…

Continue reading

NXP LPC55S16-EVK: unboxing and first impressions

Hi, this is Mark from embeddedpro in the United Kingdom and I’m back with more videos and blogs. In the next few weeks there are two new Cortex M33 development boards becoming available. I’ll blog about my first impressions of the boards, and what I’ve been doing with them. I want my blogs give you some tips, hints and ideas about things that you can do: let me know in the Comments below.

Board photograph: LPC55S16-EVK
Continue reading

Implementing FreeRTOS Performance Counters on ARM Cortex-M

When using an RTOS like FreeRTOS, sooner or later you have to ask the question: how much time is spent in each task? The Eclipse based MCUXpresso IDE has a nice view showing exactly this kind of information:

FreeRTOS Runtime Information

FreeRTOS Runtime Information

For FreeRTOS (or that Task List view) to show that very useful information, the developer has to provide a helping hand so the RTOS can collect this information. This article shows how this can be done on an ARM Cortex-M.

Continue reading

DIY ‘Meta Clock’ with 24 Analog Clocks

Human since 1982 claims

“Human since 1982 have the copyright to works displaying digital time using a grid arrangement of analog clocks…”

I’m not a lawyer, but without obligations (imho) I have removed the content.

Thanks for understanding,

Erich

Investigating ARM Cortex® M33 core – Dual Core debug tutorial

In last week’s blog I explained that the LPC55S69 microcontroller from NXP has two Cortex® M33 cores, named core0 and core1. There was a lot of theory, and so this week I put it all into practice and show you how to debug 2 cores with MCUXpresso IDE.

Multicore Debugging Interface in MCUXpresso IDE showing 2 different projects
Continue reading

Investigating ARM Cortex® M33 core – NXP LPC55S69 has *two* M33 cores.

Throughout this series I’ve been using the LPC55S69 microcontroller from NXP as a platform to investigate the ARM Cortex® M33 core. NXP designed the LPC55S69 with two Cortex M33 cores and so this week I’m investigating these in more detail.

You’ll remember that when ARM launch a processor core it will have a number of optional features. This is shown very clearly on the LPC55S69. The 150 MHz primary core – cpu0 – is a full implementation of Cortex® M33 and includes the optional components FPU, MPU, DSP, ITM and the TrustZone® features.

Continue reading

Investigating ARM Cortex® M33 core – DSP Acceleration 3 (PowerQuad FFT Tutorial)

I’ve always felt that the Fourier Transform (and in particular the embedded implementation Fast Fourier Transform) is the GOAT* of the DSP algorithms. The ability to convert a time-domain signal into a frequency-domain signal is invaluable in applications as diverse as audio processing, medical electrocardiographs (ECGs) and speech recognition.

So this week I’ll show you how to use the Transform engine in the PowerQuad on LPC55S69 to calculate a 512-point FFT. All of the difficult steps are very easily managed and the PowerQuad does all of the very heavy lifting.

Data from PowerQuad – 512-point real FFT on 400 Hz input signal with 1200 Hz harmonic
Continue reading

Investigating ARM Cortex® M33 core – DSP Acceleration 2 (PowerQuad Matrix Engine Tutorial)

Last week I showed you how to use the Coprocessor interface of PowerQuad to calculate (mostly) unary functions. As an example the natural logarithm ln(x) takes just one operand, whilst the floating divide in PowerQuad requires two operands (x1)/(x2). PowerQuad is very efficient accelerating these functions, requiring just 6 clock cycles for the ln(x) and 6 clock cycles for the float (x1)/(x2). In comparison the single-precision floating point unit in Cortex® M4F and M33F requires 13 clock cycles to perform the same float divide.

But there are two ‘sides’ to the PowerQuad:

  • The Coprocessor interface, using ARMv8-M coprocessor instructions;
  • The AHB bus interface, where we address PowerQuad as a peripheral.

So this week… operating the PowerQuad as a peripheral. I’ll show you how to use the PowerQuad SDK driver in MCUXpresso in a new project, and use the Matrix Engine in the PowerQuad to solve simultaneous equations.

Continue reading

World Stepper Clock with NXP LPC845

I really love clocks. I think this is I am living here in Switzerland. Beside of that: clock projects are just fun :-). After I have completed a single clock using stepper motors (see “DIY Stepper Motor Clock with NXP LPC845-BRK“), I wanted to build a special one which is able to show up to four different time zones: Below an example with London (UK), New York (USA), Beijing (China) and Lucerne (Switzerland):

Stepper Clock

Stepper Clock

Continue reading

Investigating ARM Cortex® M33 core with TrustZone® – DSP Acceleration 1

If you ask your colleagues about ARM Cortex® M33 core, they’ll most likely remember that the ARMv8-M architecture adds the (optional!) TrustZone® security extension. But one, overlooked but significant new feature in ARMv8-M is the new coprocessor interface.

ARMv8-M adds many new features to the core architecture, including Co-processor interface

With the LPC55S69 microcontroller, NXP decided to add an extremely powerful DSP Accelerator onto this coprocessor interface, named PowerQuad. In this week’s video series I’m investigating the PowerQuad, and the functions that it provides.

Continue reading

Open Source LittlevGL GUI Library on Adafruit Touch LCDs with NXP LPC55S69-EVK

The NXP LPC55S69-EVK is a versatile board. In this article I show how it can be used with Adafruit TFT LCD boards, both with resistive and capacitive touch. For the software I’m using the open source LittlevGL GUI.

LPC55S69-EVK with Adafruit Touch LCD

LPC55S69-EVK with Adafruit Touch LCD

Continue reading

Investigating ARM Cortex® M33 core with TrustZone® – In-Application Programming Tutorial

Last week I investigated the In-System Programming feature in the boot ROM of the LPC55S69. Using the command-line program blhost I was able to erase the flash and download simple LED blinky programs. Of course, the functions that erase and program the flash are present in the boot ROM.

Wouldn’t it be great if we could call those program and erase functions from our own software running on the LPC55S69?

Of course, we can. This is the NXP feature In-Application Programming, and this week I’ll show you how to interface to the Flash Driver in the boot ROM from software. Since the program and erase functions are running from ROM, this avoids the normal considerations about using flash for non-volatile storage.

Continue reading

Investigating ARM Cortex® M33 core with TrustZone® – In-System Programming Tutorial

This week I’m back to the normal ‘Tutorial’ format with a look at the In-System Programming feature in the boot ROM of the LPC55S69. I’ll use the NXP-provided command-line program blhost and interface with the ROM to erase the flash and download simple LED blinky programs.

Continue reading

TrustZone® vs HeartBleed

During my research about the TrustZone® security extension over the last weeks I’ve had the HeartBleed exploit from 2014 in my mind. How would TrustZone® help us manage that type of ‘no bounds check’ exploit? Of course, TrustZone® was first widely available when NXP introduced the Cortex® M33 family LPC55S69 in 1Q2019 and wasn’t available back in 2014, but I wanted to put it to the test.

Continue reading

Investigating ARM Cortex® M33 core with TrustZone® – Trusted Execution Environment tutorial

When we are learning about TrustZone® it does not take long to recognise that it is the security attributes for memory that define memory regions to be Secure, Non-Secure or Non-Secure Callable. This week’s video shows how the Cortex® M33 core with TrustZone® extension can test the security attributes for every read, write and execute from memory (without impacting performance). And how the security attributes are set with the Trusted Execution Environment configuration tool inside MCUXpresso IDE.

Trusted Execution Environment configuration tool in MCUXpresso IDE
Continue reading

Investigating ARM Cortex® M33 core with TrustZone® – transition from non-secure to secure world

You might purchase a Cortex® M33 microcontroller with TrustZone® where the supplier has installed a secure ROM. Or you might be an IOT developer using LPC55S69 in your own application where you have partitioned the code into secure and non-secure partitions. At some point with Cortex® M33 core with the TrustZone® security extension you’ll want to transition from non-secure into the secure world. Or (put more elegantly), you’ll want to call one of the secure functions supported when the Cortex® M33 core is in the Secure state.

That’s the topic for this week’s video.

How will you know what secure functions are available? And what parameters are necessary to call these functions? You’ll be provided with a header file veneer_table.h and a secure object library named project_name_CMSE_lib.o. Together these 2 modules describe everything that you need to know to call a secure function and transition from the Non-Secure to the Secure state.

Just two objects – *.o and *.h define resources available in the Secure world
Continue reading