Unknown's avatar

About Erich Styger

Embedded is my passion....

rblhost: Exploring Rust’s Role in Embedded Development Tools

The Rust programming language is making its way into different areas: Rust gets added to the Linux Kernel. I see an increasing interest for using Rust in embedded projects. And Rust is used for embedded tools. I noticed this with the latest LinkServer v25.09 release: there is a new tool included in the package, rblhost.

rblhost on crates.io
rblhost on crates.io

The release note just mentioned:

- Switched to using rapid blhost (rblhost) utility.

This triggered my interest, and actually that utility is implemented in Rust :-).

Continue reading

Using CAN FD for Remote Hardware Debugging of Cortex-M Devices

Today’s projects and systems get more and more complex. Many systems include multiple MCUs, connected with a field bus or network, for example CAN. For example there can be up to 70 CAN nodes in modern cars. Such larger and connected systems are a challenge for debugging.

Traditional hardware debugging requires a hardware debug probe, connected with a dedicated SWD/JTAG debug cable to the target device. This needs dedicated pins on the target device plus physical access to the device itself. In many cases, this is not possible in the final product. The hardware debug probes, cables, pins and high speed signals are costly. And worse they can introduce new problems and are prone to interference.

If there is a field bus like CAN connecting all the MCUs, why not use it for hardware debugging? Hardware debugging meaning programming the FLASH memory, halt the MCU, inspect the memory and registers, and step through the code?

Cortex-M Hardware Debugging over CAN

Yes, we can! With the help of a rather unknown hardware feature on ARM Cortex-M devices. We can use the ARM DebugMonitor Interrupt to control and debug the target system. As we would use a JTAG/SWD connection. Instead, we use the CAN bus :-).

Continue reading

Streamlining LinkServer Installation for CI/CD

I’m shifting more and more of my CI/CD testing infrastructure using the LinkServer runner. One reason is the LinkServer runner can run the test on-target. It can also collect GNO gcov coverage information at the same time. LinkServer is a suite of software tools for launching and managing GDB servers for NXP debug probes.

Streamlined LinkServer Installation on Linux
Streamlined LinkServer Installation on Linux
Continue reading

New MetaClockClock: Combining Art and Technology in Clocks

The MetaClockClock is a clock made of clocks. It consists of multiple dual-shaft stepper motors, arranged as a matrix of 5×12 analog clocks. Each clock has two motorized hands that can move independently. The clock can tell the time, but in a unconventional way. The entire matrix creates a meta-display that shows the time or other information. Between the updates, the hand can do coordinated, choreographed movements.

The clock hands are laser cut acrylics with get light up with a LED ring around the clock.

This article describes the build with CNC cut oak enclosure, laser-cut parts and 3D printed items.

Continue reading

Transforming a Lawn into a Wildflower Meadow

This article is not about software or an electronics project. It is about a multi-year project transforming a lawn into a home and food for various species. Slugs plus a cat have played a role in this, in one way or another.

Swallowtail Caterpillar (Schwalbenschwanz Raupe)
Wildflower Meadow
Continue reading

Optimizing CI/CD with RAM Target Applications

Usually, I run applications in the micro-controller FLASH memory. But for a CI/CD or testing environment that is not the best choice.

It is possible to have a ‘RAM target’, where the application is running in RAM instead of FLASH memory. This has the advantage not to ‘wear-out’ the FLASH memory. Plus loading and running in RAM is faster. This makes having RAM targets especially useful for testing.

In this article I’m using the NXP LPC55S16-EVK board, but any other target or board is applicable.

NXP LPC55S16-EVK
NXP LPC55S16-EVK
Continue reading

Setup Guide for FRDM-IMX93 as Debug Server

In Using Raspberry Pi and MCU-Link for Remote Embedded Debugging I created a remote server for debugging. I did order the NXP FRDM-IMX93 a few weeks ago, and did not had a chance to use it. So why not doing the same?

FRDM-i.MX93 with MCU-Link
FRDM-i.MX93 with MCU-Link

Here is how it can be uses as remote debug server,

Continue reading

Running On-Target Tests with Coverage in VS Code

Test coverage is a very useful metric: it tells how much of your code has been covered by tests. Or the other way: it helps identifying areas of my code which has not been running tests. A new CMake extension in VS Code is available. It works with the new NXP LinkServer test runner to allow running tests on an embedded target. The really cool thing is: it collects and visualizes test data with coverage information in a single step:

Test Data combined with Coverage in VS Code
Test Data combined with Coverage in VS Code
Continue reading

Using Raspberry Pi and MCU-Link for Remote Embedded Debugging

Remote debugging an embedded target is very useful: I don’t need a direct debug probe or USB cable connection. Instead, I’m using a network connection (wired or even wireless) over TCP/IP to talk to the debug probe and target. That way I can place the debug probe and target system away from my desk.

In Debugging ARM Cores with IP based Debug Probes and Eclipse I have used IP-based debug probes. This is a logical path, but expensive.

In Remote Debugging with USB based JTAG/SWD Debug Probes I showed how normal USB based debug probes can be used. This approach uses a remote host machine (e.g. desktop machine or notebook). This approach is still expensive, not scalable and the host machine needs a lot of space too.

So what if I use a Raspberry Pi instead? The RPi is small, inexpensive and ideal for such a task. Additionally, I can easily use it to build a test or debug farm. In this article, I show the use of the Raspberry Pi for remote debugging. A sub $20 or embedded target debug probe can be employed.

Raspberry Pi with NXP MCU-Link for Embedded Target Debugging
Raspberry Pi with NXP MCU-Link for Embedded Target Debugging
Continue reading

Static Analysis with SonarQube and VS Code

SonarQube from Sonar is a free static analysis tool for VS Code. It is able to analyze the source code and find issues. SonarQube does a similar job as other static analysis tools like CppCheck for VS Code.

SonarQube in VS Code
Continue reading