/*

* Copyright 2016-2018 NXP

* ALl rights reserved.

*

* Redistribution and use in source and binary forms, with or
without modification,

* are permitted provided that the following conditions are met:

*

* 0 Redistributions of source code must retain the above copyright
notice, this list

* of conditions and the following disclaimer.

*

* 0 Redistributions in binary form must reproduce the above
copyright notice, this

* list of conditions and the following disclaimer in the
documentation and/or

* other materials provided with the distribution.

*

* 0 Neither the name of NXP Semiconductor, Inc. nor the names of
its

* contributors may be used to endorse or promote products derived
from this

* software without specific prior written permission.

>k

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND

% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED

* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR

* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON

* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS

* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/%%
*x @file LPC55569_blinky.c
* @brief Application entry point.
*/

#include <stdio.h>

#include "board.h"

#include "peripherals.h"

#include "pin_mux.h"

#include "clock_config.h"

#include "LPC55569_cm33_core@.h"

#include "fsl_debug_console.h"

/* TODO: insert other include files here. %/
#include "fsl_mrt.h"

#include "fsl_pint.h"

#include "fsl_inputmux.h"

#include "fsl_ctimer.h"

/% TODO: insert other definitions and declarations here. x/
#define MRT_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)

#define APP_LED_INIT LED_GREEN_INIT(LOGIC_LED_OFF);

#define APP_LED_ON (LED_GREEN_ON());

#define APP_LED_TOGGLE (LED_GREEN_TOGGLE());

#define BLINKY_PINT_PIN_INTO@_USER kINPUTMUX_GpioPortl1lPin9ToPintsel
#define CTIMER CTIMER2 /% Timer 2 x/

#define CTIMER_MAT_OUT KCTIMER_Match_2 /% Match output 1 x*/
#define CTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_CTmier2)

#define COUNT_DOWN 0
#define COUNT_UP 1
#define COUNT_PAUSE 2

uint32_t maskLED = 0;
volatile uint32_t g_pwmPeriod =
volatile uint32_t g_pulsePeriod
uint32_t g_timerClock;

oU;
= 0U;

/
skokskskskokskskskokskskskskokskokskokskskskokskskskskokskskskskskskskokskskskokskskskokskskskskokskskskokskskskkskskskskokskokkok ok ok
sokskskskokkskokokok

x Code

skokkskskokokskskokokskskkokskskokokokskskokokskskskokskskokskokskskskokskskokokskskokskokskskokokskskokokskskoksk ok sk skokok sk kokok ok
sorskskokokokskokok /

status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t
dutyCyclePercent, uint32_t timerClock_Hz)

/* Calculate PWM period match value x/
g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1;

/* Calculate pulse width match value x/
if (dutyCyclePercent == 0)
{

g_pulsePeriod = g_pwmPeriod + 1;

else

{

g_pulsePeriod (g_pwmPeriod * (100 - dutyCyclePercent)) /
100;
¥

return kStatus_Success;

}

void MRTOQ_IRQHandler(void)

/* Will get here every 10ms x/
static uint32_t brightcount = 0;
static uint32_t dir_count = COUNT_UP;
/* Clear interrupt flag.x/
MRT_ClearStatusFlags(MRT@, kMRT_Channel_0,
KMRT_TimerInterruptFlag);

/* Update the PWM period in range 1%-99% every 1@0ms in sawtooth
brightness x/

if (dir_count==COUNT_UP) {

brightcount++;

if (brightcount == 100) {

dir_count = COUNT_DOWN;

}

}

if (dir_count==COUNT_DOWN) {
brightcount——;
if (brightcount == 0) {
dir_count = COUNT_UP;
}

by

if (maskLED) {
dir_count = COUNT_UP;
brightcount = 99;

s

CTIMER_GetPwmPeriodValue (20000, brightcount, g_timerClock);
CTIMER_SetupPwmPeriod (CTIMER, CTIMER_MAT_OUT, g_pwmPeriod,
g_pulsePeriod, false);

}

/*!

* @brief Call back for PINT Pin interrupt 0-7.

*/

void pint_intr_callback(pint_pin_int_t pintr, uint32_t

pmatch_status)

{
PRINTF("\r\nPINT Pin Interrupt %d event detected.", pintr);
maskLED 7= 1UL;

/%

* @brief Application entry point.
*/

int main(void) {

/* Structure of initialize MRT =/
mrt_config_t mrtConfig;
uint32_t mrt_clock;

ctimer_config_t config;
uint32_t srcClock_Hz;

/* Init board hardware. x/
BOARD_InitBootPins();
BOARD_InitBootClocks();
BOARD_InitBootPeripherals();

/* Init FSL debug console. x/
BOARD_InitDebugConsole();

PRINTF("\n\rNXP Blinky");

/* enable clock for GPIO; used to toggle the LED's x/
// CLOCK_EnableClock(kCLOCK_Gpiol);

/* Connect trigger sources to PINT */
INPUTMUX_Init (INPUTMUX) ;
INPUTMUX_AttachSignal(INPUTMUX, kPINT_PinInt@,
BLINKY_PINT_PIN_INTO@ USER);
/* Turnoff clock to inputmux to save power. Clock is only needed
to make changes *x/
INPUTMUX_Deinit (INPUTMUX) ;
/* Initialize PINT x/
PINT_Init(PINT);
/* Setup Pin Interrupt @ for rising edge */
PINT_PinInterruptConfig(PINT, kPINT_PinInt@,
KPINT_PinIntEnableRiseEdge, pint_intr_callback);
/* Enable callbacks for PINTQ by Index *x/
PINT_EnableCallbackByIndex(PINT, kPINT_PinIntQ);

mrt_clock = MRT_CLK_FREQ;

/* mrtConfig.enableMultiTask = false; x/

MRT_GetDefaultConfig(&mrtConfig);

/* Init mrt module x/

MRT_Init(MRT@, &mrtConfig);

/* Setup Channel @ to be repeated x/

MRT_SetupChannelMode(MRTO, kMRT_Channel_0, kMRT_RepeatMode);

/* Enable timer interrupts for channel @ x/

MRT_EnableInterrupts(MRT@, kMRT_Channel_0,
KMRT_TimerInterruptEnable);

/* Enable at the NVIC x/

Enab1leIRQ(MRTQ_IRQn);

/x Start channel 0 x/

PRINTF("\r\nStarting mrt timer@, channel No.@ for 10ms tick");

MRT_StartTimer (MRTQ, kMRT_Channel_0, USEC_TO_COUNT(10000U,
mrt_clock));

/* CTimer@ counter uses the AHB clock, some CTimerl modules use

the Aysnc clock x/
PRINTF("\r\nCTimer initialisation for PWM");
srcClock_Hz = CTIMER_CLK_FREQ;
CTIMER_GetDefaultConfig(&config);
g_timerClock = srcClock_Hz / (config.prescale + 1);
CTIMER_Init(CTIMER, &config);
/* Get the PWM period match value and pulse width match value of
20Khz PWM signal with 99% dutycycle x/
CTIMER_GetPwmPeriodValue (20000, 1, g_timerClock);
CTIMER_SetupPwmPeriod (CTIMER, CTIMER_MAT_OUT, g_pwmPeriod,
g_pulsePeriod, false);
CTIMER_StartTimer (CTIMER);

while(1) {
}

return 0 ;

